欧拉示性数

6
1
收藏
分享

欧拉示性数 假设曲面上有一个三角剖分,我们把所有三角形的顶点总个数记为p(公共顶点只看成一个,下同),边数记为l,三角形的个数记为n,则e=p-l+n是曲面的拓扑不变量!也就是说不管是什么剖分, e总是得到相同的数值。 e被称为称为欧拉示性数。

定义

假设曲面上有一个三角剖分,我们把所有三角形的顶点总个数记为p(公共顶点只看成一个,下同),边数记为l,三角形的个数记为n,则e=p-l+n是曲面的拓扑不变量!也就是说不管是什么剖分, e总是得到相同的数值。 e被称为称为欧拉示性数。

假设g是曲面上洞眼的个数(比如球面没有洞,故g=0;又如环面有一个洞,故g=1),那么e=2-2g。

g也是拓扑不变量,称为曲面的亏格(genus)。

因此在平面上,e=2=p-l+n, 此即著名的欧拉公式。

相关条目

数学几何证明假设

参考资料

评论 1
User avatar
重生62687
谢谢博主主的分享,期待更多精彩的比赛情报!
回复

Copyright © 1996-2025 DaHe Network Media. Group All Rights Reserved

京ICP备2023013984号

抖运营雅思百科